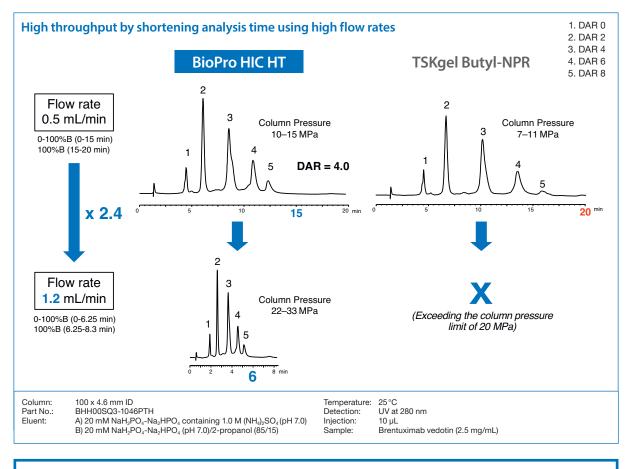

HIC





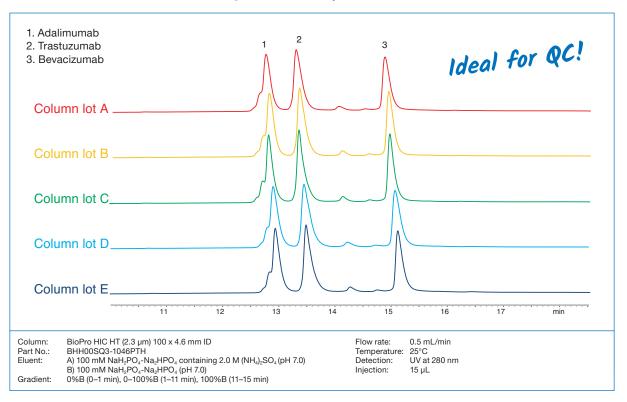





## **HIC – HPLC selectivities**

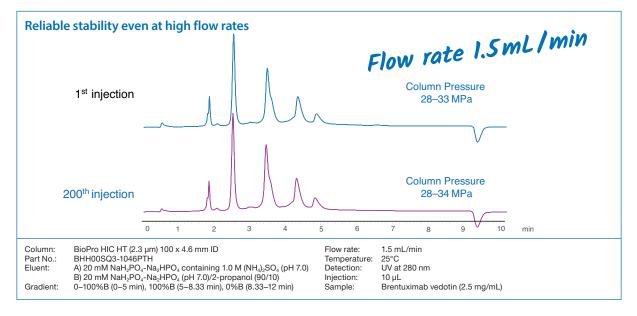
- Specifically designed for drug-to-antibody conjugates (ADCs) and antibodies
- Ideal drug-to-antibody ratio (DAR) analysis
- High throughput by reducing analysis time
- Excellent batch-to-batch reproducibility
- Long term stability

|                             | BioPro HIC HT                             | BioPro HIC BF                             |  |
|-----------------------------|-------------------------------------------|-------------------------------------------|--|
| Base particle               | hydrophilic polymer<br>(polymethacrylate) | hydrophilic polymer<br>(polymethacrylate) |  |
| Particle size / µm          | 2.3                                       | 4                                         |  |
| Pore                        | non-porous                                | non-porous                                |  |
| Functional group            | butyl                                     | butyl                                     |  |
| pH range                    | 2–12                                      | 2–12                                      |  |
| Pressure limit (for 100 mm) | 40 MPa (5,800 psi)                        | 20 MPa (2,900 psi)                        |  |
| Temperature range           | 10–60°C                                   | 10–60 °C                                  |  |


### **High column stability**



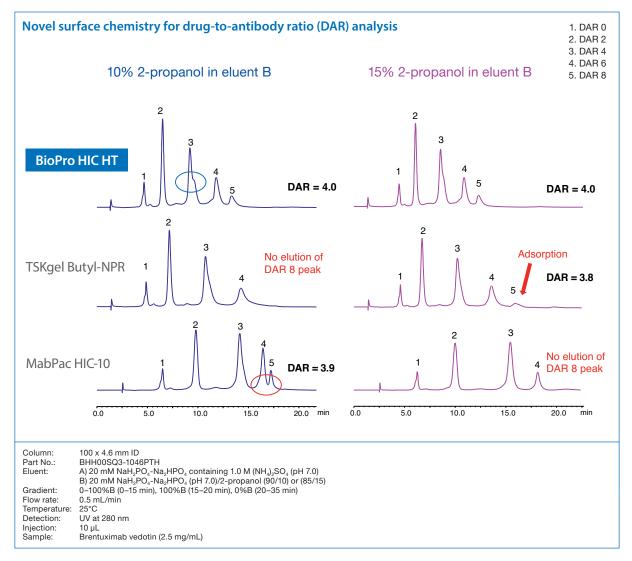
BioPro HIC HT improves analysis throughput of ADCs by 2–3 times with an excellent Drug-to-Antibody Ratio (DAR). The rapid analysis is possible without loss of resolution. Competitor HIC columns fail under these conditions.


# HIC – BioPro HIC: Reproducibility & stability

#### **Excellent batch-to-batch reproducibility**



BioPro HIC HT exhibits an excellent batch-to-batch reproducibility making it the ideal choice for quality control analysis of biopharmaceuticals such as mAbs.


#### **Exceptional stability**

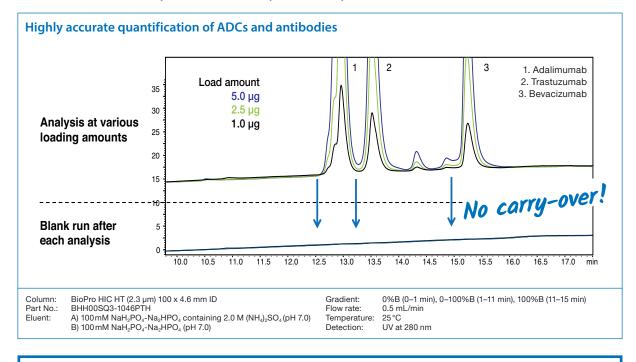


BioPro HIC HT offers excellent stability under high flow rates/high pressure conditions due to its unique rigid particle and optimised column packing technology.

# HIC – BioPro HIC: ADC analysis

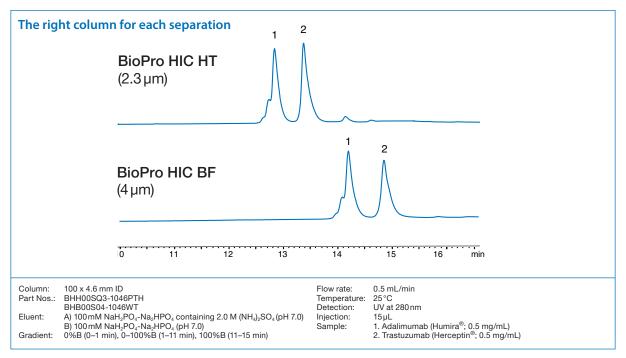
### **Designed for analysis of ADCs**




BioPro HIC HT offers higher resolution than conventional HIC columns. Its surface modification suppresses excessive or too strong adsorption of ADCs and results in highly reliable quantification. With varying 2-propanol content, all peaks are completely eluted from the BioPro HIC HT column with high resolution. Another peak is partially separated from peak 3. Additionally, the same DAR values are observed at any content of 2-propanol.

#### **BioPro HIC HT offers:**

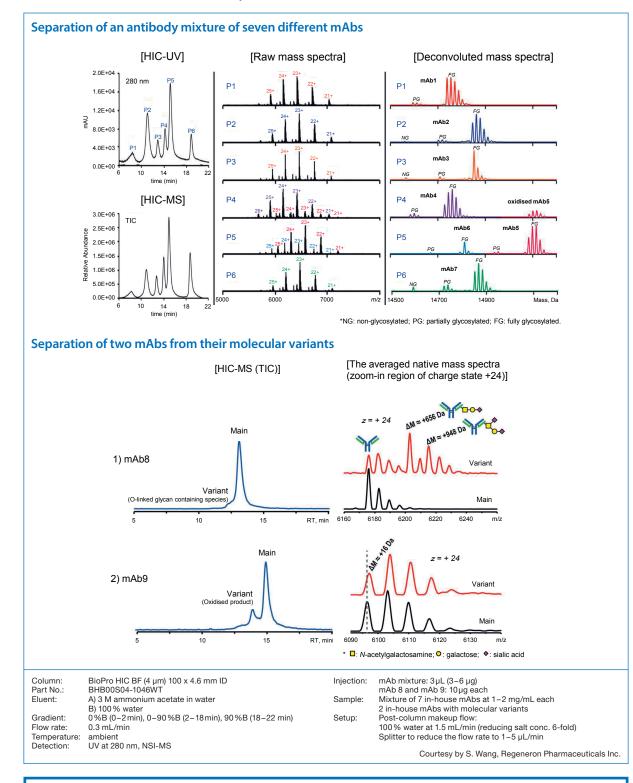
- Higher resolution than conventional HIC columns
- Highly reliable quantification
- Flexible method development


## HIC - BioPro HIC: No carry-over

#### Excellent recovery and virtually no carry-over



BioPro HIC HT offers higher linearity over wide loading and virtually no carry-over. This contributes to highly accurate quantitation of ADCs and antibodies.


### **Different hydrophobicity**



BioPro HIC HT is the first choice for ADCs or mAbs. BioPro HIC BF columns show a stronger retention and can therefore be used for the separation of low hydrophobic proteins or especially for the analysis of oxidised mAbs.

# HIC - BioPro HIC: Direct HIC-MS coupling

### Online native HIC-MS analysis of mAbs and their molecular variants



#### To enable simultaneous UV and MS detection a post-column makeup flow and a splitter were used. The makeup flow decreases the salt concentration while the splitter reduces the flow rate to enable the coupling to MS. A nanospray ionisation (NSI) was chosen because of its high sensitivity and salt tolerance.

Reference: Y. Yan, T. Xing, S. Wang, T. J. Daly, N. Li, Online coupling of analytical hydrophobic interaction chromatography with native mass spectrometry fo the characterization of monoclonal antibodies and related products, J. Pharm. Biomed. Anal. 186 (2020) 113313.

#### The influence of salts in HIC separations

The technique known as hydrophobic interaction chromatography is a mode of chromatography that separates proteins by differences in surface hydrophobicity. [1] This method utilises reversible interactions that occur between protein molecules and hydrophobic stationary phase ligands attached to the particle surface.

Certain non-denaturing salts are used to improve the hydrophobic interactions between proteins and the stationary phase. The mobile phase is typically an aqueous solution of salts such as ammonium sulfate or sodium chloride and a buffer to control pH (usually phosphate buffer between pH 6 and 7). The Hofmeister series of lyotropic and chaotropic ions shown below in Fig. 1 provides a template for salt selection. High concentrations of salt, particularly ammonium sulfate, may precipitate proteins; therefore, solubility should be checked under the initial gradient (binding) conditions. The strength of the interaction between the protein and stationary phase decreases with decreasing salt gradient (see Fig. 2). Another option is a change of pH which results in an increase or decrease in the charge on the protein due to the ionisation of acidic or basic groups.

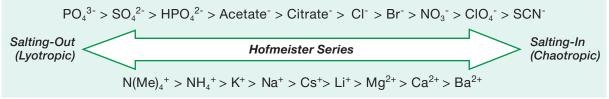



Fig. 1: The Hofmeister Series of lyotropic and chaotropic ions.

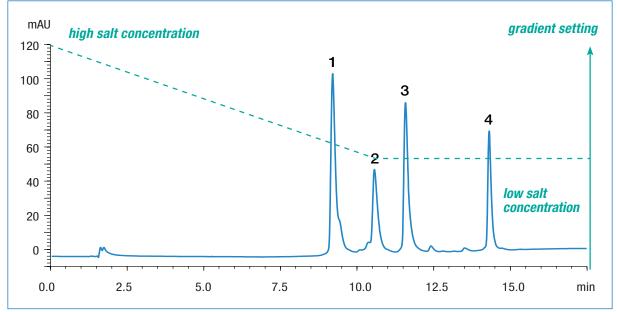
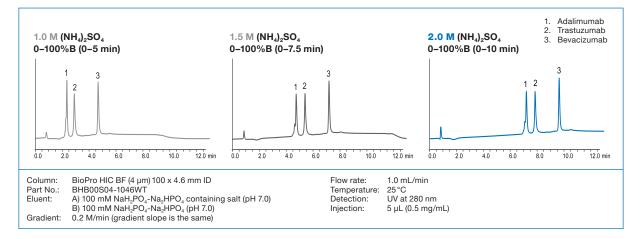


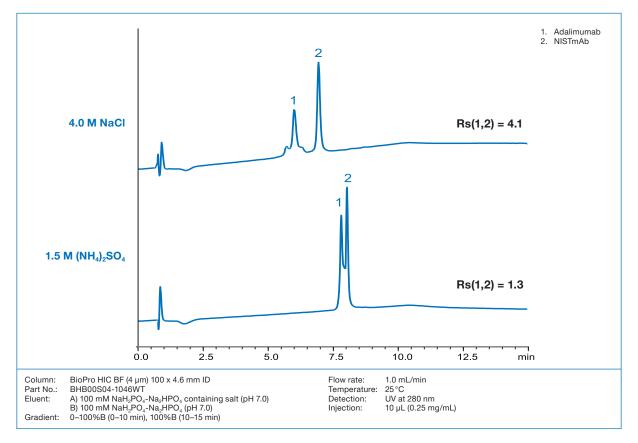

Fig. 2: Method with decreasing salt gradient.

| Column:<br>Part No.:<br>Eluent:                       | BioPro HIC BF (100 x 4.6 mm ID)<br>BHB00S04-1046WT<br>A) 100 mM NaH₂PO₄-Na₂HPO₄ containing 2.0 M (NH₄)₂SO₄ (pH 7.0)<br>B) 100 mM NaH₂PO₂-Na₂HPO, (pH 7.0) | Samples: | 1. Myoglobin (0.73 mg/mL)<br>2. Ribonuclease A (0.75 mg/mL)<br>3. Lysozyme (0.25 mg/mL)<br>4. ar-Chymotrypsinaaen A (0.25 gm/mL) |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------|
| Flow rate:<br>Gradient:<br>Temperature:<br>Detection: | 0.5 mL/min<br>0–100%B (0–11 min), 100%B (11–15 min)                                                                                                       |          |                                                                                                                                  |
| Injection:                                            | 15µL                                                                                                                                                      |          |                                                                                                                                  |


HIC is particularly effective when used to separate proteins and monoconal antibodies. The separation of monoclonal antibodies, mAb aggregates and glycosylated mAbs can be achieved due to their specific hydrophobic properties. It also provides an excellent method for determination of drug-to-antibody ratios in antibody-drug conjugates.

[1] Queiroza, J.A.; Tomaza, C.T.; Cabral, J.M.: Hydrophobic interaction chromatography of proteins, J Biotechnol. 2001, 87, 143-159.

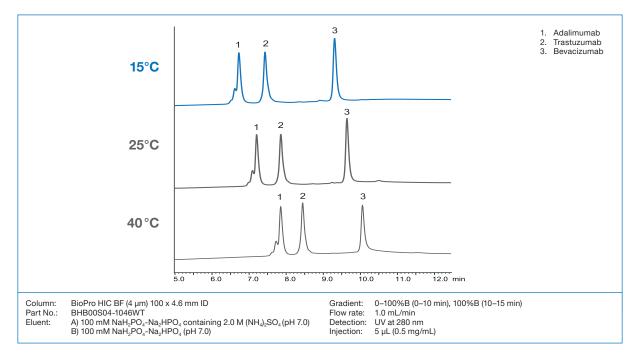
## HIC – Expert Tips: Separation factors


### **Effect of initial salt concentration**

**B** uffers containing  $(NH_4)_2SO_4$  are often used as a mobile phase in HIC mode because  $(NH_4)_2SO_4$  has a strong salting-out effect. The higher the initial concentration of  $(NH_4)_2SO_4$ ; the stronger will be the retention of proteins. Therefore, a buffer with a high salt concentration is more suitable for the separation of low hydrophobic proteins with weak retention.

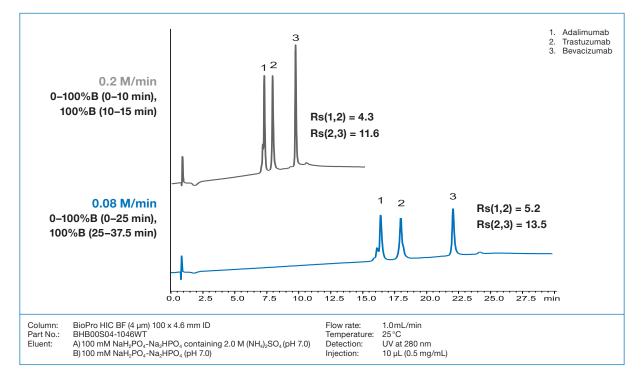


### Influence of the type of salt


**N** aCl and  $CH_3COONH_4$  are also used as buffer salts. The separation selectivity varies with the type of salt used in some cases, so changing the type of salt can also be effective when the separation is not sufficient. However, these salts have to be used at very high concentrations to gain retentions comparable to  $(NH_4)_2SO_4$ . Attention needs to be paid to the prevention of precipitation of salts in the buffer and damage of the LC system.



# HIC – Expert Tips: Separation factors / Ordering information


#### **Temperature influence**

n HIC mode, higher temperatures result in longer retention times of proteins. This assumes that the hydrophobic area interacting with the stationary phase becomes larger due to a change in the structure of proteins with increasing temperature so that the hydrophobic interactions become stronger.



### Variation of gradient slope

n general, shallower gradients improve the separation and the resulting resolution.



# HIC – Ordering information

#### 2.3 and 4 $\mu m$ non-porous analytical columns (max. pressure 20–40 MPa)

| Phase         | Particle size<br>[µm] | Column ID<br>[mm] | Column length<br>[mm] | Part number      | Precolumn filter<br>2 μm* |
|---------------|-----------------------|-------------------|-----------------------|------------------|---------------------------|
|               |                       |                   |                       |                  | (pack of 5)               |
| BioPro HIC HT | 2.3                   | 4.6               | 100                   | BHH00SQ3-1046PTH | XRPRCS35                  |
|               |                       | 4.6               | 33                    | BHH00SQ3-H346PTH | XRPRCS35                  |
| BioPro HIC BF | 4                     | 4.6               | 100                   | BHB00S04-1046WT  | XRPRCS35                  |

\*Holder required, part no XRPRCS03 Other dimensions on demand